A novel fast learning algorithms for time-delay neural networks
نویسندگان
چکیده
To counter the drawbacks that Waibel 's time-delay neural networks (TDW) take up long training time in phoneme recognition, the paper puts forward several improved fast learning methods of 1PW. Merging unsupervised Oja's rule and the similar error back propagation algorithm for initial training of 1PhW weights can effectively increase convergence speed, at the same time error firnction almost monotonyly descending. Improving error energy function. updating the changing of weights according to sue of output error, can increase training speed. From back propagation along layer, to average overlap part of back propagation error of first hidden layer along fiame, the training samples fiom a little to many gradually, convergence speed increases must faster. To multi-class phonemic modular 1PWs, we improve the architecture of Waible 's modular networks, and get an optimum modular lDhWs (OMWs) of tree structure to accelerate its learning, Its training time is less than Waibel's modular TDWs. The convergence speed increases about tens of times when the complexity of network increases just a little more, and the recognized rate is the same on the whole. Keywora3: Phoneme Recognition, Time-delay neural networks, Convergence speed, Optimum Module;
منابع مشابه
Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملAn Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کامل